Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1093/ndtplus/sfr164

http://scihub22266oqcxt.onion/10.1093/ndtplus/sfr164
suck pdf from google scholar
26069817!4455826!26069817
unlimited free pdf from europmc26069817    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid26069817      Clin+Kidney+J 2012 ; 5 (Suppl 1): i15-i24
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Regulation of magnesium balance: lessons learned from human genetic disease #MMPMID26069817
  • de Baaij JH; Hoenderop JG; Bindels RJ
  • Clin Kidney J 2012[Feb]; 5 (Suppl 1): i15-i24 PMID26069817show ga
  • Magnesium (Mg(2+)) is the fourth most abundant cation in the body. Thus, magnesium homeostasis needs to be tightly regulated, and this is facilitated by intestinal absorption and renal excretion. Magnesium absorption is dependent on two concomitant pathways found in both in the intestine and the kidneys: passive paracellular transport via claudins facilitates bulk magnesium absorption, whereas active transcellular pathways mediate the fine-tuning of magnesium absorption. The identification of genes responsible for diseases associated with hypomagnesaemia resulted in the discovery of several magnesiotropic proteins. Claudins 16 and 19 form the tight junction pore necessary for mass magnesium transport. However, most of the causes of genetic hypomagnesaemia can be tracked down to transcellular magnesium transport in the distal convoluted tubule. Within the distal convoluted tubule, magnesium reabsorption is a tightly regulated process that determines the final urine magnesium concentration. Therefore, insufficient magnesium transport in the distal convoluted tubule owing to mutated magnesiotropic proteins inevitably leads to magnesium loss, which cannot be compensated for in downstream tubule segments. Better understanding of the molecular mechanism regulating magnesium reabsorption will give new opportunities for better therapies, perhaps including therapies for patients with chronic renal failure.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box