Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22687286&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215
Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice #MMPMID22687286
Meng F; Wang K; Aoyama T; Grivennikov SI; Paik Y; Scholten D; Cong M; Iwaisako K; Liu X; Zhang M; Osterreicher CH; Stickel F; Ley K; Brenner DA; Kisseleva T
Gastroenterology 2012[Sep]; 143 (3): 765-776.e3 PMID22687286show ga
BACKGROUND & AIMS: Interleukin (IL)-17 signaling has been implicated in lung and skin fibrosis. We examined the role of IL-17 signaling in the pathogenesis of liver fibrosis in mice. METHODS: Using cholestatic and hepatotoxic models of liver injury, we compared the development of liver fibrosis in wild-type mice with that of IL-17RA(-/-) mice and of bone marrow chimeric mice devoid of IL-17 signaling in immune and Kupffer cells (IL-17RA(-/-) to wild-type and IL-17A(-/-) to wild-type mice) or liver resident cells (wild-type to IL-17RA(-/-) mice). RESULTS: In response to liver injury, levels of Il-17A and its receptor increased. IL-17A increased appeared to promote fibrosis by activating inflammatory and liver resident cells. IL-17 signaling facilitated production of IL-6, IL-1, and tumor necrosis factor-alpha by inflammatory cells and increased the expression of transforming growth factor-1, a fibrogenic cytokine. IL-17 directly induced production of collagen type I in hepatic stellate cells by activating the signal transducer and activator of transcription 3 (Stat3) signaling pathway. Mice devoid of Stat3 signaling in hepatic stellate cells (GFAPStat3(-/-) mice) were less susceptible to fibrosis. Furthermore, deletion of IL-23 from immune cells attenuated liver fibrosis, whereas deletion of IL-22 exacerbated fibrosis. Administration of IL-22 and IL-17E (IL-25, a negative regulator of IL-23) protected mice from bile duct ligation-induced liver fibrosis. CONCLUSIONS: IL-17 induces liver fibrosis through multiple mechanisms in mice. Reagents that block these pathways might be developed as therapeutics for patients with cirrhosis.