Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1152/ajprenal.00396.2011

http://scihub22266oqcxt.onion/10.1152/ajprenal.00396.2011
suck pdf from google scholar
21900458!3233874!21900458
unlimited free pdf from europmc21900458    free
PDF from PMC    free
html from PMC    free

Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=21900458&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid21900458      Am+J+Physiol+Renal+Physiol 2011 ; 301 (6): F1143-59
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Molecular regulation of NKCC2 in the thick ascending limb #MMPMID21900458
  • Ares GR; Caceres PS; Ortiz PA
  • Am J Physiol Renal Physiol 2011[Dec]; 301 (6): F1143-59 PMID21900458show ga
  • The kidney plays an essential role in blood pressure regulation by controlling short-term and long-term NaCl and water balance. The thick ascending limb of the loop of Henle (TAL) reabsorbs 25-30% of the NaCl filtered by the glomeruli in a process mediated by the apical Na(+)-K(+)-2Cl(-) cotransporter NKCC2, which allows Na(+) and Cl(-) entry from the tubule lumen into TAL cells. In humans, mutations in the gene coding for NKCC2 result in decreased or absent activity characterized by severe salt and volume loss and decreased blood pressure (Bartter syndrome type 1). Opposite to Bartter's syndrome, enhanced NaCl absorption by the TAL is associated with human hypertension and animal models of salt-sensitive hypertension. TAL NaCl reabsorption is subject to exquisite control by hormones like vasopressin, parathyroid, glucagon, and adrenergic agonists (epinephrine and norepinephrine) that stimulate NaCl reabsorption. Atrial natriuretic peptides or autacoids like nitric oxide and prostaglandins inhibit NaCl reabsorption, promoting salt excretion. In general, the mechanism by which hormones control NaCl reabsorption is mediated directly or indirectly by altering the activity of NKCC2 in the TAL. Despite the importance of NKCC2 in renal physiology, the molecular mechanisms by which hormones, autacoids, physical factors, and intracellular ions regulate NKCC2 activity are largely unknown. During the last 5 years, it has become apparent that at least three molecular mechanisms determine NKCC2 activity. As such, membrane trafficking, phosphorylation, and protein-protein interactions have recently been described in TALs and heterologous expression systems as mechanisms that modulate NKCC2 activity. The focus of this review is to summarize recent data regarding NKCC2 regulation and discuss their potential implications in physiological control of TAL function, renal physiology, and blood pressure regulation.
  • |Alternative Splicing[MESH]
  • |Animals[MESH]
  • |Blood Pressure/physiology[MESH]
  • |Endocytosis[MESH]
  • |Humans[MESH]
  • |Loop of Henle/*metabolism[MESH]
  • |Mice[MESH]
  • |Phosphorylation[MESH]
  • |Rats[MESH]
  • |Sodium Chloride/metabolism[MESH]
  • |Sodium-Potassium-Chloride Symporters/genetics/*metabolism[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box