Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1681/ASN.2008060640

http://scihub22266oqcxt.onion/10.1681/ASN.2008060640
suck pdf from google scholar
19443644!2723985!19443644
unlimited free pdf from europmc19443644    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 233.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid19443644      J+Am+Soc+Nephrol 2009 ; 20 (8): 1714-23
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature #MMPMID19443644
  • Takabatake Y; Sugiyama T; Kohara H; Matsusaka T; Kurihara H; Koni PA; Nagasawa Y; Hamano T; Matsui I; Kawada N; Imai E; Nagasawa T; Rakugi H; Isaka Y
  • J Am Soc Nephrol 2009[Aug]; 20 (8): 1714-23 PMID19443644show ga
  • CXC chemokine ligand 12 (CXCL12; stromal cell-derived factor 1) is a unique homeostatic chemokine that signals through its cognate receptor, CXCR4. CXCL12/CXCR4 signaling is essential for the formation of blood vessels in the gastrointestinal tract during development, but its contribution to renal development remains unclear. Here, we found that CXCL12-secreting stromal cells surround CXCR4-positive epithelial components of early nephrons and blood vessels in the embryonic kidney. In glomeruli, we observed CXCL12-secreting podocytes in close proximity to CXCR4-positive endothelial cells. Both CXCL12- and CXCR4-deficient kidneys exhibited identical phenotypes; there were no apparent abnormalities in early nephrogenesis or in differentiation of podocytes and tubules, but there was defective formation of blood vessels, including ballooning of the developing glomerular tuft and disorganized patterning of the renal vasculature. To clarify the relative importance of different cellular defects resulting from ablation of CXCL12 and CXCR4, we established endothelial cell-specific CXCR4-deficient mice, which recapitulated the renal phenotypes of conventional CXCR4-deficient mice. We conclude that CXCL12 secreted from stromal cells or podocytes acts on endothelial cells to regulate vascular development in the kidney. These findings suggest new potential therapeutic targets for remodeling the injured kidney.
  • |Animals[MESH]
  • |Chemokine CXCL12/*metabolism[MESH]
  • |Endothelial Cells/metabolism[MESH]
  • |Kidney/blood supply/*embryology/metabolism[MESH]
  • |Mice[MESH]
  • |Mice, Inbred C57BL[MESH]
  • |Mice, Knockout[MESH]
  • |Podocytes/metabolism[MESH]
  • |Receptors, CXCR4/*metabolism[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box