Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1042/BJ20081405

http://scihub22266oqcxt.onion/10.1042/BJ20081405
suck pdf from google scholar
19228120!ä!19228120

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid19228120      Biochem+J 2009 ; 420 (1): 115-22
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Identification of dimer interactions required for the catalytic activity of the TRPM7 alpha-kinase domain #MMPMID19228120
  • Crawley SW; Cote GP
  • Biochem J 2009[Apr]; 420 (1): 115-22 PMID19228120show ga
  • TRPM7 (transient receptor potential melastatin) combines an ion channel domain with a C-terminal protein kinase domain that belongs to the atypical alpha-kinase family. The TRPM7 alpha-kinase domain assembles into a dimer through the exchange of an N-terminal segment that extends from residue 1551 to residue 1577 [Yamaguchi, Matsushita, Nairn and Kuriyan (2001) Mol. Cell 7, 1047-1057]. Here, we show, by analysis of truncation mutants, that residues 1553-1562 of the N-terminus are essential for kinase activity but not dimer formation. Within this 'activation sequence', site-directed mutagenesis identified Tyr-1553 and Arg-1558 as residues critical for activity. Examination of the TRPM7 kinase domain structure suggests that the activation sequence interacts with the other subunit to help position a catalytic loop that contains the invariant Asp-1765 residue. Residues 1563-1570 of the N-terminal segment are critical for dimer assembly. Mutation of Leu-1564, Ile-1568 or Phe-1570 to alanine abolished both kinase activity and dimer formation. The activity of a monomeric TRPM7 kinase domain lacking the entire N-terminal segment was rescued by a GST (glutathione transferase) fusion protein containing residues 1548-1576 of TRPM7, showing that all interactions essential for activity are provided by the N-terminal segment. Activity was also restored by GST fused to the N-terminal segment of TRPM6 (residues 1711-1740), demonstrating the feasibility of forming functional TRPM6-TRPM7 alpha-kinase domain heterodimers. It is proposed that covalent modifications or binding interactions that alter the conformation of the N-terminal exchanged segment may provide a means to regulate TRPM7 kinase activity.
  • |Amino Acid Sequence[MESH]
  • |Animals[MESH]
  • |Catalysis[MESH]
  • |Mice[MESH]
  • |Protein Kinases/metabolism[MESH]
  • |Protein Multimerization[MESH]
  • |Protein Structure, Tertiary[MESH]
  • |Protein Subunits[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box