Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1007/s00424-005-1439-x

http://scihub22266oqcxt.onion/10.1007/s00424-005-1439-x
suck pdf from google scholar
16044308!ä!16044308

suck abstract from ncbi

pmid16044308      Pflugers+Arch 2005 ; 451 (1): 243-9
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • TRPMs and neuronal cell death #MMPMID16044308
  • Aarts MM; Tymianski M
  • Pflugers Arch 2005[Oct]; 451 (1): 243-9 PMID16044308show ga
  • Death of CNS neurons during acute injury occurs as a result of a complex combination of excitotoxicity, necrosis, apoptosis, oedema and inflammatory reactions. Neuroprotection via glutamate receptor blockade or antioxidant or anti-inflammatory therapy have not proven effective in the clinical treatment of brain damage due to narrow therapeutic windows, poor pharmacokinetics or blockade of the signalling essential for normal excitatory neurotransmission and neuronal survival. Recent work in neuronal biochemistry, genomics and proteomics has increased understanding of the molecular organization of the excitatory synapse and the neuronal postsynaptic density. Transient receptor potential (TRP) channels are an exciting new family of cation channels that are highly expressed in the brain. Several members can be induced by oxidative stress and oxygen free radicals, both of which play important roles in neurodegeneration. Recent work has indicated that members of the melastatin subfamily (TRPM) of TRP proteins, particularly TRPM7 and TRPM2, may play key roles in neuronal death that is activated by oxidative stress and downstream from excitotoxic signal pathways. This discovery provides an exiting new avenue for research into the pathophysiology and treatment of acute neurodegeneration.
  • |Calcium/physiology[MESH]
  • |Cell Death/*drug effects[MESH]
  • |Central Nervous System Diseases/*physiopathology[MESH]
  • |Glucose/deficiency[MESH]
  • |Humans[MESH]
  • |Hypoxia/physiopathology[MESH]
  • |Neurodegenerative Diseases/physiopathology[MESH]
  • |Neurons/*physiology[MESH]
  • |Oxidative Stress/physiology[MESH]
  • |Protein Serine-Threonine Kinases[MESH]
  • |Reactive Oxygen Species/metabolism[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box