Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.3389/fendo.2016.00017

http://scihub22266oqcxt.onion/10.3389/fendo.2016.00017
suck pdf from google scholar
C4770035!4770035 !26973596
unlimited free pdf from europmc26973596
    free
PDF from PMC    free
html from PMC    free

Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=26973596 &cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215

suck abstract from ncbi

pmid26973596
      Front+Endocrinol+(Lausanne) 2016 ; 7 (?): 17
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Signaling Interactions in the Adrenal Cortex #MMPMID26973596
  • Spät A ; Hunyady L ; Szanda G
  • Front Endocrinol (Lausanne) 2016[]; 7 (?): 17 PMID26973596 show ga
  • The major physiological stimuli of aldosterone secretion are angiotensin II (AII) and extracellular K(+), whereas cortisol production is primarily regulated by corticotropin (ACTH) in fasciculata cells. AII triggers Ca(2+) release from internal stores that is followed by store-operated and voltage-dependent Ca(2+) entry, whereas K(+)-evoked depolarization activates voltage-dependent Ca(2+) channels. ACTH acts primarily through the formation of cAMP and subsequent protein phosphorylation by protein kinase A. Both Ca(2+) and cAMP facilitate the transfer of cholesterol to mitochondrial inner membrane. The cytosolic Ca(2+) signal is transferred into the mitochondrial matrix and enhances pyridine nucleotide reduction. Increased formation of NADH results in increased ATP production, whereas that of NADPH supports steroid production. In reality, the control of adrenocortical function is a lot more sophisticated with second messengers crosstalking and mutually modifying each other's pathways. Cytosolic Ca(2+) and cGMP are both capable of modifying cAMP metabolism, while cAMP may enhance Ca(2+) release and voltage-activated Ca(2+) channel activity. Besides, mitochondrial Ca(2+) signal brings about cAMP formation within the organelle and this further enhances aldosterone production. Maintained aldosterone and cortisol secretion are optimized by the concurrent actions of Ca(2+) and cAMP, as exemplified by the apparent synergism of Ca(2+) influx (inducing cAMP formation) and Ca(2+) release during response to AII. Thus, cross-actions of parallel signal transducing pathways are not mere intracellular curiosities but rather substantial phenomena, which fine-tune the biological response. Our review focuses on these functionally relevant interactions between the Ca(2+) and the cyclic nucleotide signal transducing pathways hitherto described in the adrenal cortex.
  • ?


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box