Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1186/s12859-017-1584-1

http://scihub22266oqcxt.onion/10.1186/s12859-017-1584-1
suck pdf from google scholar
C5351198!5351198 !28292266
unlimited free pdf from europmc28292266
    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\28292266 .jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117
pmid28292266
      BMC+Bioinformatics 2017 ; 18 (1 ): 170
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • MicroRNA categorization using sequence motifs and k-mers #MMPMID28292266
  • Yousef M ; Khalifa W ; Acar ?E ; Allmer J
  • BMC Bioinformatics 2017[Mar]; 18 (1 ): 170 PMID28292266 show ga
  • BACKGROUND: Post-transcriptional gene dysregulation can be a hallmark of diseases like cancer and microRNAs (miRNAs) play a key role in the modulation of translation efficiency. Known pre-miRNAs are listed in miRBase, and they have been discovered in a variety of organisms ranging from viruses and microbes to eukaryotic organisms. The computational detection of pre-miRNAs is of great interest, and such approaches usually employ machine learning to discriminate between miRNAs and other sequences. Many features have been proposed describing pre-miRNAs, and we have previously introduced the use of sequence motifs and k-mers as useful ones. There have been reports of xeno-miRNAs detected via next generation sequencing. However, they may be contaminations and to aid that important decision-making process, we aimed to establish a means to differentiate pre-miRNAs from different species. RESULTS: To achieve distinction into species, we used one species' pre-miRNAs as the positive and another species' pre-miRNAs as the negative training and test data for the establishment of machine learned models based on sequence motifs and k-mers as features. This approach resulted in higher accuracy values between distantly related species while species with closer relation produced lower accuracy values. CONCLUSIONS: We were able to differentiate among species with increasing success when the evolutionary distance increases. This conclusion is supported by previous reports of fast evolutionary changes in miRNAs since even in relatively closely related species a fairly good discrimination was possible.
  • |Animals [MESH]
  • |Base Sequence [MESH]
  • |Fabaceae/classification/genetics [MESH]
  • |High-Throughput Nucleotide Sequencing [MESH]
  • |Humans [MESH]
  • |MicroRNAs/chemistry/genetics/*metabolism [MESH]
  • |Phylogeny [MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box