Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1007/978-1-4939-2687-9_4

http://scihub22266oqcxt.onion/10.1007/978-1-4939-2687-9_4
suck pdf from google scholar
C5901762!5901762 !25981466
unlimited free pdf from europmc25981466
    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\25981466 .jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117
pmid25981466
      Methods+Mol+Biol 2015 ; 1311 (ä): 47-75
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Annotation and Classification of CRISPR-Cas Systems #MMPMID25981466
  • Makarova KS ; Koonin EV
  • Methods Mol Biol 2015[]; 1311 (ä): 47-75 PMID25981466 show ga
  • The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods.
  • |CRISPR-Associated Proteins/*classification/*genetics [MESH]
  • |Clustered Regularly Interspaced Short Palindromic Repeats/*genetics [MESH]
  • |Genomics [MESH]
  • |Immunity [MESH]
  • |Molecular Sequence Annotation/*methods [MESH]
  • |Phylogeny [MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box