Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1100/tsw.2008.144

http://scihub22266oqcxt.onion/10.1100/tsw.2008.144
suck pdf from google scholar
C5848641!5848641 !19082415
unlimited free pdf from europmc19082415
    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\19082415 .jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117
pmid19082415
      ScientificWorldJournal 2008 ; 8 (ä): 1184-96
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • A review of nontraditional biomanipulation #MMPMID19082415
  • Zhang X ; Xie P ; Huang X
  • ScientificWorldJournal 2008[Dec]; 8 (ä): 1184-96 PMID19082415 show ga
  • The aim of this review is to identify problems, find general patterns, and extract recommendations for successful management using nontraditional biomanipulation to improve water quality. There are many obstacles that prevent traditional biomanipulation from achieving expectations: expending largely to remove planktivorous fish, reduction of external and internal phosphorus, and macrophyte re-establishment. Grazing pressure from large zooplankton is decoupled in hypereutrophic waters where cyanobacterial blooms flourish. The original idea of biomanipulation (increased zooplankton grazing rate as a tool for controlling nuisance algae) is not the only means of controlling nuisance algae via biotic manipulations. Stocking phytoplanktivorous fish may be considered to be a nontraditional method; however, it can be an effective management tool to control nuisance algal blooms in tropical lakes that are highly productive and unmanageable to reduce nutrient concentrations to low levels. Although small enclosures increase spatial overlap between predators and prey, leading to overestimates of the impact of predation, microcosm and whole-lake experiments have revealed similar community responses to major factors that regulate lake communities, such as nutrients and planktivorous fish. Both enclosure experiments and large-scale observations revealed that the initial phytoplankton community composition greatly impacted the success of biomanipulation. Long-term observations in Lake Donghu and Lake Qiandaohu have documented that silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) (two filter-feeding planktivorous species commonly used in management) can suppress Microcystis blooms efficiently. The introduction of silver and bighead carp could be an effective management technique in eutrophic systems that lack macrozooplankton. We confirmed that nontraditional biomanipulation is only appropriate if the primary aim is to reduce nuisance blooms of large algal species, which cannot be controlled effectively by large herbivorous zooplankton. Alternatively, this type of biomanipulation did not work efficiently in less eutrophic systems where nanophytoplankton dominated.
  • |*Food Chain [MESH]
  • |Animals [MESH]
  • |Humans [MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box