Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Tyrosyl radicals in enzyme catalysis: some properties and a focus on photosynthetic water oxidation Babcock GT; Espe M; Hoganson C; Lydakis-Simantiris N; McCracken J; Shi W; Styring S; Tommos C; Warncke KActa Chem Scand (Cph) 1997[May]; 51 (5): 533-40Enzymes that require a redox-active amino acid for catalysis or function have emerged as a distinct class of proteins. For the tyrosine-based radical enzymes, we show that the spin-density distribution in the radical follows an odd alternate pattern that is invariant to within 10% across the class. General properties of the radical enzymes are summarized from which we conclude that their essential role in catalysis is to initiate substrate metabolism by hydrogen-atom abstraction. These ideas are extended to the YZ and YD tyrosines in Photosystem II and a radical-based hydrogen-atom abstraction model for water oxidation is discussed. Differences in rates of oxidation of YZ and YD by the reaction-center chlorophyll, P680+, under various conditions, are considered and rationalized on the basis of changes in reorganization energy induced by the local protein structure and by the presence or absence of the (Mn)4 cluster that binds substrate water.|*Photosynthesis[MESH]|Free Radicals[MESH]|Galactose Oxidase/*metabolism[MESH]|Oxidation-Reduction[MESH]|Tyrosine[MESH]|Water[MESH] |