Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Adaptation of glomerular forces and flows to renal injury Brenner BMYale J Biol Med 1978[May]; 51 (3): 301-5The mechanism of glomerular ultrafiltration in normal kidneys or after renal injury is reviewed. The role of increased glomerular plasma flow in mediating increases of nephron filtration rate is evidenced under experimental conditions resulting in filtration pressure disequilibrium along glomerular capillaries. The increase of nephron filtration in hypertrophied kidneys appears to be due mainly to a rise of glomerular plasma flow and, to a smaller extent, to an increase of glomerular capillary hydrostatic pressure, the ultrafiltration coefficient remaining unchanged. In contrast, in the early phases of experimentally induced nephrotoxic serum nephritis, a decrease of the ultrafiltration coefficient was observed; nephron filtration rate, however, remained within the normal range, as a consequence of a higher hydrostatic pressure in the glomerular capillaries of the nephritic kidneys.|Adaptation, Physiological[MESH]|Animals[MESH]|Capillaries/physiology[MESH]|Glomerular Filtration Rate[MESH]|Hydrostatic Pressure[MESH]|Kidney Diseases/*physiopathology[MESH]|Kidney Glomerulus/*physiology/physiopathology[MESH]|Nephrectomy[MESH]|Nephritis/physiopathology[MESH]|Rats[MESH]|Regional Blood Flow[MESH] |