Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
Warning: file_get_contents(http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22421403&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 445
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Performance evaluation of a pediatric viscous impeller pump for Fontan cavopulmonary assist Giridharan GA; Koenig SC; Kennington J; Sobieski MA; Chen J; Frankel SH; Rodefeld MDJ Thorac Cardiovasc Surg 2013[Jan]; 145 (1): 249-57OBJECTIVE: The anatomic and physiologic constraints for pediatric cavopulmonary assist differ markedly from adult Fontan circulations owing to smaller vessel sizes and risk of elevated pulmonary resistance. In this study, hemodynamic and hemolysis performance of a catheter-based viscous impeller pump (VIP) to power the Fontan circulation is assessed at a pediatric scale ( approximately 15 kg) and performance range (0-30 mm Hg). METHODS: Computer simulation and mock circulation studies were conducted to assess the hydraulic performance, acute hemodynamic response to different levels VIP support, and the potential for vena caval collapse. Computational fluid dynamics simulations were used to estimate VIP hydraulic performance, shear rates, and potential for hemolysis. Hemolysis was quantified in a mock loop with fresh bovine blood. RESULTS: A VIP augmented 4-way total cavopulmonary connection flow at pediatric scales and restored systemic pressures and flows to biventricular values, without causing flow obstruction or suction. VIP generated flows up to 4.1 L/min and pressure heads of up to 38 mm Hg at 11,000 rpm. Maximal shear rate was 160 Pa, predicting low hemolysis risk. Observed hemolysis was low with plasma free hemoglobin of 11.4 mg . dL(-1) . h(-1). CONCLUSIONS: A VIP will augment Fontan cavopulmonary flow in the proper pressure and flow ranges, with low hemolysis risk under more stringent pediatric scale and physiology compared with adult scale. This technology may be developed to simultaneously reduce systemic venous pressure and improve cardiac output after stage 2 or 3 Fontan repair. It may serve to compress surgical staging, lessening the pathophysiologic burden of repair.|*Heart-Assist Devices/adverse effects[MESH]|*Hemodynamics[MESH]|Animals[MESH]|Cattle[MESH]|Child, Preschool[MESH]|Computer Simulation[MESH]|Feasibility Studies[MESH]|Fontan Procedure/adverse effects/*instrumentation[MESH]|Hemolysis[MESH]|Humans[MESH]|Hydrodynamics[MESH]|Materials Testing[MESH]|Models, Cardiovascular[MESH]|Prosthesis Design[MESH]|Stress, Mechanical[MESH]|Time Factors[MESH] |