Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
l�ll RNA polymerase III transcription in cancer: the BRF2 connection Cabarcas S; Schramm LMol Cancer 2011[Apr]; 10 (�): 47RNA polymerase (pol) III transcription is responsible for the transcription of small, untranslated RNAs involved in fundamental metabolic processes such mRNA processing (U6 snRNA) and translation (tRNAs). RNA pol III transcription contributes to the regulation of the biosynthetic capacity of a cell and a direct link exists between cancer cell proliferation and deregulation of RNA pol III transcription. Accurate transcription by RNA pol III requires TFIIIB, a known target of regulation by oncogenes and tumor suppressors. There have been significant advances in our understanding of how TFIIIB-mediated transcription is deregulated in a variety of cancers. Recently, BRF2, a component of TFIIIB required for gene external RNA pol III transcription, was identified as an oncogene in squamous cell carcinomas of the lung through integrative genomic analysis. In this review, we focus on recent advances demonstrating how BRF2-TFIIIB mediated transcription is regulated by tumor suppressors and oncogenes. Additionally, we present novel data further confirming the role of BRF2 as an oncogene, extracted from the Oncomine database, a cancer microarray database containing datasets derived from patient samples, providing evidence that BRF2 has the potential to be used as a biomarker for patients at risk for metastasis. This data further supports the idea that BRF2 may serve as a potential therapeutic target in a variety of cancers.|*Transcription, Genetic[MESH]|Animals[MESH]|Genomics[MESH]|Humans[MESH]|Models, Biological[MESH]|Neoplasms/*enzymology/*genetics/metabolism[MESH]|RNA Polymerase III/*metabolism[MESH]|Transcription Factor TFIIIB/genetics/*metabolism[MESH] |