Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Actin structure and function Dominguez R; Holmes KCAnnu Rev Biophys 2011[]; 40 (ä): 169-86Actin is the most abundant protein in most eukaryotic cells. It is highly conserved and participates in more protein-protein interactions than any known protein. These properties, along with its ability to transition between monomeric (G-actin) and filamentous (F-actin) states under the control of nucleotide hydrolysis, ions, and a large number of actin-binding proteins, make actin a critical player in many cellular functions, ranging from cell motility and the maintenance of cell shape and polarity to the regulation of transcription. Moreover, the interaction of filamentous actin with myosin forms the basis of muscle contraction. Owing to its central role in the cell, the actin cytoskeleton is also disrupted or taken over by numerous pathogens. Here we review structures of G-actin and F-actin and discuss some of the interactions that control the polymerization and disassembly of actin.|*Models, Biological[MESH]|*Models, Chemical[MESH]|Actins/*chemistry/*physiology/ultrastructure[MESH]|Binding Sites[MESH]|Computer Simulation[MESH]|Models, Molecular[MESH]|Protein Binding[MESH]|Protein Conformation[MESH]|Structure-Activity Relationship[MESH] |