Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Biomineralization and matrix vesicles in biology and pathology Golub EESemin Immunopathol 2011[Sep]; 33 (5): 409-17In normal healthy individuals, mineral formation is restricted to specialized tissues which form the skeleton and the dentition. Within these tissues, mineral formation is tightly controlled both in growth and development and in normal adult life. The mechanism of calcification in skeletal and dental tissues has been under investigation for a considerable period. One feature common to almost all of these normal mineralization mechanisms is the elaboration of matrix vesicles, small (20-200 nm) membrane particles, which bud off from the plasma membrane of mineralizing cells and are released into the pre-mineralized organic matrix. The first crystals which form on this organic matrix are seen in and around matrix vesicles. Pathologic ectopic mineralization is seen in a number of human genetic and acquired diseases, including calcification of joint cartilage resulting in osteoarthritis and mineralization of the cardiovasculature resulting in exacerbation of atherosclerosis and blockage of blood vessels. Surprisingly, increasing evidence supports the contention that the mechanisms of soft tissue calcification are similar to those seen in normal skeletal development. In particular, matrix vesicle-like membranes are observed in a number of ectopic calcifications. The purpose of this review is to describe how matrix vesicles function in normal mineral formation and review the evidence for their participation in pathologic calcification.|*Calcification, Physiologic[MESH]|Animals[MESH]|Calcinosis/*metabolism[MESH]|Collagen/metabolism[MESH]|Extracellular Matrix/*metabolism[MESH]|Humans[MESH]|Minerals/metabolism[MESH]|Ossification, Heterotopic/metabolism[MESH]|Transport Vesicles/chemistry/*metabolism[MESH] |