Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Cytocompatibility of medical biomaterials containing nickel by osteoblasts: a systematic literature review Mikulewicz M; Chojnacka KBiol Trace Elem Res 2011[Sep]; 142 (3): 865-89The present review is based on a survey of 21 studies on the cytocompatibility of medical biomaterials containing nickel, as assessed by cell culture of human and animal osteoblasts or osteoblast-like cells. Among the biomaterials evaluated were stainless steel, NiTi alloys, pure Ni, Ti, and other pure metals. The materials were either commercially available, prepared by the authors, or implanted by various techniques to generate a protective layer of oxides, nitrides, acetylides. The observation that the layers significantly reduced the initial release of metal ions and increased cytocompatibility was confirmed in cell culture experiments. Physical and chemical characterization of the materials was performed. This included, e.g., surface characterization (roughness, wettability, corrosion behavior, quantity of released ions, microhardness, and characterization of passivation layer). Cytocompatibility tests of the materials were conducted in the cultures of human or animal osteoblasts and osteoblast-like cells. The following assays were carried out: cell proliferation and viability test, adhesion test, morphology (by fluorescent microscopy or SEM). Also phenotypic and genotypic markers were investigated. In the majority of works, it was found that the most cytocompatible materials were stainless steel and NiTi alloy. Pure Ni was rendered and less cytocompatible. All the papers confirmed that the consequence of the formation of protective layers was in significant increase of cytocompatibility of the materials. This indicates the possible further modifications of the manufacturing process (formation of the passivation layer).|Animals[MESH]|Biocompatible Materials/adverse effects/*chemistry[MESH]|Cell Proliferation/drug effects[MESH]|Cell Survival/drug effects[MESH]|Humans[MESH]|Nickel/adverse effects/*chemistry[MESH]|Osteoblasts/*drug effects[MESH] |