Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Remodeling epithelial cell organization: transitions between front-rear and apical-basal polarity Nelson WJCold Spring Harb Perspect Biol 2009[Jul]; 1 (1): a000513Polarized epithelial cells have a distinctive apical-basal axis of polarity for vectorial transport of ions and solutes across the epithelium. In contrast, migratory mesenchymal cells have a front-rear axis of polarity. During development, mesenchymal cells convert to epithelia by coalescing into aggregates that undergo epithelial differentiation. Signaling networks and protein complexes comprising Rho family GTPases, polarity complexes (Crumbs, PAR, and Scribble), and their downstream effectors, including the cytoskeleton and the endocytic and exocytic vesicle trafficking pathways, together regulate the distributions of plasma membrane and cytoskeletal proteins between front-rear and apical-basal polarity. The challenge is to understand how these regulators and effectors are adapted to regulate symmetry breaking processes that generate cell polarities that are specialized for different cellular activities and functions.|Animals[MESH]|Body Patterning[MESH]|Cell Adhesion[MESH]|Cell Polarity[MESH]|Dictyostelium[MESH]|Endocytosis[MESH]|Epithelial Cells/*cytology[MESH]|Exocytosis[MESH]|Humans[MESH]|Models, Biological[MESH]|Signal Transduction[MESH]|rho GTP-Binding Proteins/metabolism[MESH] |