Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer Patra CR; Bhattacharya R; Mukhopadhyay D; Mukherjee PAdv Drug Deliv Rev 2010[Mar]; 62 (3): 346-61The targeted delivery of a drug should result in enhanced therapeutic efficacy with low to minimal side effects. This is a widely accepted concept, but limited in application due to lack of available technologies and process of validation. Biomedical nanotechnology can play an important role in this respect. Biomedical nanotechnology is a burgeoning field with myriads of opportunities and possibilities for advancing medical science and disease treatment. Cancer nanotechnology (1-100 nm size range) is expected to change the very foundations of cancer treatment, diagnosis and detection. Nanomaterials, especially gold nanoparticles (AuNPs) have unique physico-chemical properties, such as ultra small size, large surface area to mass ratio, and high surface reactivity, presence of surface plasmon resonance (SPR) bands, biocompatibility and ease of surface functionalization. In this review, we will discuss how the unique physico-chemical properties of gold nanoparticles may be utilized for targeted drug delivery in pancreatic cancer leading to increased efficacy of traditional chemotherapeutics.|*Metal Nanoparticles[MESH]|Animals[MESH]|Antineoplastic Agents/administration & dosage/therapeutic use[MESH]|Drug Delivery Systems[MESH]|Gold/*chemistry[MESH]|Humans[MESH]|Nanotechnology/methods[MESH]|Pancreatic Neoplasms/*drug therapy[MESH]|Particle Size[MESH]|Surface Plasmon Resonance[MESH] |