Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Hyperpolarized MR imaging: neurologic applications of hyperpolarized metabolism Ross BD; Bhattacharya P; Wagner S; Tran T; Sailasuta NAJNR Am J Neuroradiol 2010[Jan]; 31 (1): 24-33Hyperpolarization is the general term for a method of enhancing the spin-polarization difference of populations of nuclei in a magnetic field. No less than 5 distinct techniques (dynamic nuclear polarization [DNP]; parahydrogen-induced polarization-parahydrogen and synthesis allow dramatically enhanced nuclear alignment [PHIP-PASADENA]; xenon/helium polarization transfer; Brute Force; (1)H hyperpolarized water) are currently under exhaustive investigation as means of amplifying the intrinsically (a few parts per million) weak signal intensity used in conventional MR neuroimaging and spectroscopy. HD-MR imaging in vivo is a metabolic imaging tool causing much of the interest in HD-MR imaging. The most successful to date has been DNP, in which carbon-13 ((13)C) pyruvic acid has shown many. PHIP-PASADENA with (13)C succinate has shown HD-MR metabolism in vivo in tumor-bearing mice of several types, entering the Krebs-tricarboxylic acid cycle for ultrafast detection with (13)C MR imaging, MR spectroscopy, and chemical shift imaging. We will discuss 5 promising preclinical studies: (13)C succinate PHIP in brain tumor; (13)C ethylpyruvate DNP and (13)C acetate; DNP in rodent brain; (13)C succinate PHIP versus gadolinium imaging of stroke; and (1)H hyperpolarized imaging. Recent developments in clinical (13)C neurospectroscopy encourage us to overcome the remaining barriers to clinical HD-MR imaging.|Animals[MESH]|Brain/*metabolism[MESH]|Contrast Media/*metabolism[MESH]|Humans[MESH]|Magnetic Resonance Imaging/*methods[MESH]|Spectrum Analysis[MESH] |