Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Narrative review: evolving concepts in potassium homeostasis and hypokalemia Greenlee M; Wingo CS; McDonough AA; Youn JH; Kone BCAnn Intern Med 2009[May]; 150 (9): 619-25Humans are intermittently exposed to large variations in potassium intake, which range from periods of fasting to ingestion of potassium-rich meals. These fluctuations would abruptly alter plasma potassium concentration if not for rapid mechanisms, primarily in skeletal muscle and the liver, that buffer the changes in plasma potassium concentration by means of transcellular potassium redistribution and feedback control of renal potassium excretion. However, buffers have capacity limits, and even robust feedback control mechanisms require that the perturbation occur before feedback can initiate corrective action. In contrast, feedforward control mechanisms sense the effect of disturbances on the system's homeostasis. This review highlights recent experimental insights into the participation of feedback and feedforward control mechanisms in potassium homeostasis. New data make clear that feedforward homeostatic responses activate when decreased potassium intake is sensed, even when plasma potassium concentration is still within the normal range and before frank hypokalemia ensues, in addition to the classic feedback activation of renal potassium conservation when plasma potassium concentration decreases. Given the clinical importance of dyskalemias in patients, these novel experimental paradigms invite renewed clinical inquiry into this important area.|Animals[MESH]|Feedback[MESH]|Homeostasis[MESH]|Humans[MESH]|Hypokalemia/*metabolism[MESH]|Kidney/metabolism[MESH]|Liver/metabolism[MESH]|Muscle, Skeletal/metabolism[MESH]|Potassium/blood/*metabolism[MESH] |