Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion Lee MJ; Fried SKAm J Physiol Endocrinol Metab 2009[Jun]; 296 (6): E1230-8This review summarizes recent advances in our understanding of the pre- and posttranscriptional mechanisms that regulate leptin production and secretion in adipocytes. Basal leptin production is proportional to the status of energy stores, i.e., fat cell size, and this is mainly regulated by alterations in leptin mRNA levels. Leptin mRNA levels are regulated by hormones, including glucocorticoids and catecholamines, but little is known about the transcriptional mechanisms involved. Leptin synthesis and secretion is also acutely modulated in response to hormones such as insulin and the availability of metabolic fuels. Acute variations in leptin production over a time course of minutes to hours are mediated at the levels of both translation and secretion. Increases in amino acids and insulin after a meal activate the mammalian target of rapamycin (mTOR) pathway, leading to an increase in specific rates of leptin biosynthesis. Cross-talk among mTOR, PKA, and AMP-activated protein kinase pathways appears to integrate hormonal and nutrient signals that regulate leptin mRNA translation, at least in part through mechanisms involving its 5'- and 3'-untranslated regions. In addition, the rate of leptin secretion from preformed stores in response to hormonal cues is also regulated. Insulin stimulates, and adrenergic agonists inhibit, leptin secretion, and this likely contributes to variations in the magnitude of nutrition-related leptin excursions and oscillations. Overall, the study of leptin production has contributed to a deepening understanding of leptin biology and, more broadly, to our understanding of the cellular and molecular mechanisms by which the adipocyte integrates hormonal and nutrient signals to regulate adipokine production.|Adipose Tissue/*metabolism[MESH]|Animals[MESH]|Eating/physiology[MESH]|Food[MESH]|Hormones/*metabolism[MESH]|Humans[MESH]|Leptin/genetics/*metabolism[MESH]|Obesity/*metabolism[MESH]|Signal Transduction/*physiology[MESH] |