Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Therapeutic manipulation of glucocorticoid metabolism in cardiovascular disease Hadoke PW; Iqbal J; Walker BRBr J Pharmacol 2009[Mar]; 156 (5): 689-712The therapeutic potential for manipulation of glucocorticoid metabolism in cardiovascular disease was revolutionized by the recognition that access of glucocorticoids to their receptors is regulated in a tissue-specific manner by the isozymes of 11beta-hydroxysteroid dehydrogenase. Selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 have been shown recently to ameliorate cardiovascular risk factors and inhibit the development of atherosclerosis. This article addresses the possibility that inhibition of 11beta-hydroxsteroid dehydrogenase type 1 activity in cells of the cardiovascular system contributes to this beneficial action. The link between glucocorticoids and cardiovascular disease is complex as glucocorticoid excess is linked with increased cardiovascular events but glucocorticoid administration can reduce atherogenesis and restenosis in animal models. There is considerable evidence that glucocorticoids can interact directly with cells of the cardiovascular system to alter their function and structure and the inflammatory response to injury. These actions may be regulated by glucocorticoid and/or mineralocorticoid receptors but are also dependent on the 11beta-hydroxysteroid dehydrogenases which may be expressed in cardiac, vascular (endothelial, smooth muscle) and inflammatory (macrophages, neutrophils) cells. The activity of 11beta-hydroxysteroid dehydrogenases in these cells is dependent upon differentiation state, the action of pro-inflammaotory cytokines and the influence of endogenous inhibitors (oxysterols, bile acids). Further investigations are required to clarify the link between glucocorticoid excess and cardiovascular events and to determine the mechanism through which glucocorticoid treatment inhibits atherosclerosis/restenosis. This will provide greater insights into the potential benefit of selective 11beta-hydroxysteroid dehydrogenase inhibitors in treatment of cardiovascular disease.|11-beta-Hydroxysteroid Dehydrogenases/antagonists & inhibitors/metabolism[MESH]|Animals[MESH]|Atherosclerosis/drug therapy/metabolism[MESH]|Blood Vessels/metabolism/pathology/physiopathology[MESH]|Cardiovascular Diseases/*drug therapy/metabolism/physiopathology[MESH]|Glucocorticoids/*metabolism/therapeutic use[MESH]|Humans[MESH]|Muscle, Smooth, Vascular/metabolism/pathology[MESH]|Myocardium/metabolism[MESH]|Organ Specificity[MESH]|Receptors, Glucocorticoid/agonists[MESH]|Receptors, Mineralocorticoid/agonists[MESH]|Tunica Intima/metabolism/pathology[MESH] |