Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
Warning: file_get_contents(http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19208433&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 445
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Xenopus, an ideal model system to study vertebrate left-right asymmetry Blum M; Beyer T; Weber T; Vick P; Andre P; Bitzer E; Schweickert ADev Dyn 2009[Jun]; 238 (6): 1215-25Vertebrate organ laterality is manifested by the asymmetric morphogenesis and placement of inner organs. Asymmetric induction of the Nodal signaling cascade in the left lateral plate mesoderm (LPM) precedes and is essential for asymmetric organ morphogenesis. While the Nodal cascade is highly conserved, symmetry breakage is considered to vary between the different classes of the vertebrates. In Xenopus, early determinants at cleavage stages were thought to break symmetry, opposed to cilia-driven leftward flow in mammals and fish. The main objectives of this review are to emphasize the conserved nature of symmetry breakage, and to demonstrate the power of Xenopus embryology to analyze and manipulate flow. In addition, mutant phenotypes described in other model organisms can easily be mimicked in frog by single or multiple knockdowns in combination with experimental manipulations and flow analysis. Xenopus, therefore, is ideally suited to address the major open questions in the field. Developmental Dynamics 238:1215-1225, 2009. (c) 2009 Wiley-Liss, Inc.|*Xenopus laevis/anatomy & histology/embryology[MESH]|Animals[MESH]|Cilia/metabolism[MESH]|Mesoderm/anatomy & histology/physiology[MESH]|Morphogenesis/*physiology[MESH]|Nodal Protein/metabolism[MESH]|Signal Transduction/physiology[MESH]|Xenopus Proteins/metabolism[MESH] |