Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Chemokines and pain mechanisms Abbadie C; Bhangoo S; De Koninck Y; Malcangio M; Melik-Parsadaniantz S; White FABrain Res Rev 2009[Apr]; 60 (1): 125-34The development of new therapeutic approaches to the treatment of painful neuropathies requires a better understanding of the mechanisms that underlie the development of these chronic pain syndromes. It is now well established that astrocytic and microglial cells modulate the neuronal mechanisms of chronic pain in spinal cord and possibly in the brain. In animal models of neuropathic pain following peripheral nerve injury, several changes occur at the level of the first pain synapse between the central terminals of sensory neurons and second order neurons. These neuronal mechanisms can be modulated by pro-nociceptive mediators released by non neuronal cells such as microglia and astrocytes which become activated in the spinal cord following PNS injury. However, the signals that mediate the spread of nociceptive signaling from neurons to glial cells in the dorsal horn remain to be established. Herein we provide evidence for two emerging signaling pathways between injured sensory neurons and spinal microglia: chemotactic cytokine ligand 2 (CCL2)/CCR2 and cathepsin S/CX3CL1 (fractalkine)/CX3CR1. We discuss the plasticity of these two chemokine systems at the level of the dorsal root ganglia and spinal cord demonstrating that modulation of chemokines using selective antagonists decrease nociceptive behavior in rodent chronic pain models. Since up-regulation of chemokines and their receptors may be a mechanism that directly and/or indirectly contributes to the development and maintenance of chronic pain, these molecular molecules may represent novel targets for therapeutic intervention in sustained pain states.|Animals[MESH]|Cathepsins/metabolism[MESH]|Chemokine CCL2/metabolism[MESH]|Chemokines/*metabolism[MESH]|Ganglia, Spinal/immunology/*metabolism/physiopathology[MESH]|Humans[MESH]|Nociceptors/immunology/*metabolism[MESH]|Pain/immunology/*metabolism/physiopathology[MESH]|Posterior Horn Cells/immunology/*metabolism/physiopathology[MESH]|Receptors, Chemokine/metabolism[MESH]|Signal Transduction/immunology[MESH] |