Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll The role of glia in the hypothalamus: implications for gonadal steroid feedback and reproductive neuroendocrine output Garcia-Segura LM; Lorenz B; DonCarlos LLReproduction 2008[Apr]; 135 (4): 419-29Neuron-to-glia, glia-to-neuron, and glia-to-glia communication are implicated in the modulation of neuronal activity and synaptic transmission relevant to reproduction. Glial cells play an important role in neuroendocrine regulation and participate in the sexual differentiation of neuronal connectivity of brain regions involved in the control of reproductive neuroendocrine output. During puberty, modifications in the morphology and chemistry of astrocytes and tanycytes in the hypothalamus and median eminence influence the maturation of the neuronal circuits controlling the secretion of GnRH. During adult reproductive life, the glial cells participate in the transient remodeling of neuronal connectivity in the preoptic area, the arcuate nucleus, the median eminence, and other brain regions involved in the control of reproduction. Gonadal hormones regulate glial plasticity by direct and indirect effects and regulate various other endocrine signals, local soluble factors and adhesion molecules that also affect glial function and glia-to-neuron communication. The glial cells, therefore, are central to the coordination of endocrine and local inputs that bring about neural plasticity and adapt reproductive capacity to homeostatic signals.|*Hypothalamus[MESH]|Adult[MESH]|Cell Communication[MESH]|Gonadotropin-Releasing Hormone/*physiology[MESH]|Humans[MESH]|Neuroglia/*physiology[MESH]|Neuronal Plasticity[MESH]|Neurons/*physiology[MESH]|Neurosecretory Systems/*physiology[MESH]|Reproduction/*physiology[MESH] |