Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll An error analysis for two-state protein-folding kinetic parameters and phi-values: progress toward precision by exploring pH dependencies on Leffler plots Cobos ES; Candel AM; Martinez JCBiophys J 2008[Jun]; 94 (11): 4393-404The interpretation of phi-values has led to an understanding of the folding transition state ensemble of a variety of proteins. Although the main guidelines and equations for calculating phi are well established, there remains some controversy about the quality of the numerical values obtained. By analyzing a complete set of results from kinetic experiments with the SH3 domain of alphaspectrin (Spc-SH3) and applying classical error methods and error-propagation formulas, we evaluated the uncertainties involved in two-state-folding kinetic experimental parameters and the corresponding calculated phi-values. We show that kinetic constants in water and m values can be properly estimated from a judicious weighting of fitting errors and describe some procedures to calculate the errors in Gibbs energies and phi-values from a traditional two-point Leffler analysis. Furthermore, on the basis of general assumptions made with the protein engineering method, we show how to generate multipoint Leffler plots via the analysis of pH dependencies of kinetic parameters. We calculated the definitive phi-values for a collection of single mutations previously designed to characterize the folding transition state of the alphaspectrin SH3 domain. The effectiveness of the pH-scanning procedure is also discussed in the context of error analysis. Judging from the magnitudes of the error bars obtained from two-point and multipoint Leffler plots, we conclude that the precision obtained for phi-values should be approximately 25%, a reasonable limit that takes into account the propagation of experimental errors.|*Models, Chemical[MESH]|*Models, Molecular[MESH]|Computer Simulation[MESH]|Hydrogen-Ion Concentration[MESH]|Kinetics[MESH]|Phase Transition[MESH]|Protein Folding[MESH]|Proteins/*chemistry[MESH]|Reproducibility of Results[MESH]|Sensitivity and Specificity[MESH] |