Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Acid-base analysis: a critique of the Stewart and bicarbonate-centered approaches Kurtz I; Kraut J; Ornekian V; Nguyen MKAm J Physiol Renal Physiol 2008[May]; 294 (5): F1009-31When approaching the analysis of disorders of acid-base balance, physical chemists, physiologists, and clinicians, tend to focus on different aspects of the relevant phenomenology. The physical chemist focuses on a quantitative understanding of proton hydration and aqueous proton transfer reactions that alter the acidity of a given solution. The physiologist focuses on molecular, cellular, and whole organ transport processes that modulate the acidity of a given body fluid compartment. The clinician emphasizes the diagnosis, clinical causes, and most appropriate treatment of acid-base disturbances. Historically, two different conceptual frameworks have evolved among clinicians and physiologists for interpreting acid-base phenomena. The traditional or bicarbonate-centered framework relies quantitatively on the Henderson-Hasselbalch equation, whereas the Stewart or strong ion approach utilizes either the original Stewart equation or its simplified version derived by Constable. In this review, the concepts underlying the bicarbonate-centered and Stewart formulations are analyzed in detail, emphasizing the differences in how each approach characterizes acid-base phenomenology at the molecular level, tissue level, and in the clinical realm. A quantitative comparison of the equations that are currently used in the literature to calculate H(+) concentration ([H(+)]) is included to clear up some of the misconceptions that currently exist in this area. Our analysis demonstrates that while the principle of electroneutrality plays a central role in the strong ion formulation, electroneutrality mechanistically does not dictate a specific [H(+)], and the strong ion and bicarbonate-centered approaches are quantitatively identical even in the presence of nonbicarbonate buffers. Finally, our analysis indicates that the bicarbonate-centered approach utilizing the Henderson-Hasselbalch equation is a mechanistic formulation that reflects the underlying acid-base phenomenology.|*Algorithms[MESH]|Acid-Base Equilibrium/*physiology[MESH]|Acid-Base Imbalance/metabolism/physiopathology[MESH]|Animals[MESH]|Bicarbonates/*analysis[MESH]|Electrons[MESH]|Humans[MESH]|Hydrogen-Ion Concentration[MESH]|Protons[MESH] |