Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
Warning: file_get_contents(http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=17409670&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 445
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Recent progress in the treatment of pulmonary arterial hypertension: expectation for rho-kinase inhibitors Fukumoto Y; Tawara S; Shimokawa HTohoku J Exp Med 2007[Apr]; 211 (4): 309-20Pulmonary arterial hypertension (PAH) is a disease with poor prognosis characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary artery hyperconstriction and remodeling. However, the precise mechanism of PAH still remains to be elucidated. Although anticoagulant agents, vasodilators (e.g., prostaglandins, sildenafil, and bosentan), and lung transplantation are currently used for the treatment of PAH, more effective treatment needs to be developed. Rho-kinase causes vascular smooth muscle hyperconstriction and vascular remodeling through inhibition of myosin phosphatase and activation of its downstream effectors. In a series of experimental and clinical studies, we have demonstrated that Rho-kinase-mediated pathway plays an important role in various cellular functions, not only in vascular smooth muscle hyperconstriction but also in actin cytoskeleton organization, cell adhesion and motility, cytokinesis, and gene expression, all of which may be involved in the pathogenesis of arteriosclerosis. We also have recently demonstrated that Rho-kinase is activated in animal models of PAH with different etiologies (monocrotaline and chronic hypoxia) associated with enhanced pulmonary vasoconstricting and proliferating responses, impaired endothelial vasodilator functions, and pulmonary remodeling. Indeed, we were able to demonstrate that intravenous fasudil, a selective Rho-kinase inhibitor, exerts acute pulmonary vasodilator effects in patients with severe PAH who were refractory to conventional therapies. Taken together, our findings indicate that Rho-kinase is a novel and important therapeutic target of PAH in humans and that Rho-kinase inhibitors are a promising new class of drugs for the fatal disorder.|1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives/therapeutic use[MESH]|Animals[MESH]|Humans[MESH]|Hypertension, Pulmonary/*drug therapy/*enzymology/genetics/physiopathology[MESH]|Intracellular Signaling Peptides and Proteins/*antagonists & inhibitors/physiology[MESH]|Mutation[MESH]|Protein Kinase Inhibitors/*therapeutic use[MESH]|Protein Serine-Threonine Kinases/*antagonists & inhibitors/physiology[MESH]|Vasodilator Agents/therapeutic use[MESH]|rho-Associated Kinases[MESH] |