Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase Marchitti SA; Deitrich RA; Vasiliou VPharmacol Rev 2007[Jun]; 59 (2): 125-50Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. 3,4-Dihydroxyphenylacetaldehyde is the aldehyde metabolite of dopamine, and 3,4-dihydroxyphenylglycolaldehyde is the aldehyde metabolite of both norepinephrine and epinephrine. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of these biogenic aldehydes. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjogren-Larsson syndrome, type II hyperprolinemia, gamma-hydroxybutyric aciduria, and pyridoxine-dependent seizures, most of which are characterized by neurological abnormalities. Several pharmaceutical agents and environmental toxins are also known to disrupt or inhibit aldehyde dehydrogenase function. It is, therefore, possible to speculate that reduced detoxification of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. This article presents a comprehensive review of what is currently known of both the neurotoxicity and respective metabolism pathways of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde with an emphasis on the role that aldehyde dehydrogenase enzymes play in the detoxification of these two aldehydes.|3,4-Dihydroxyphenylacetic Acid/*analogs & derivatives/metabolism[MESH]|Alcohol Dehydrogenase/metabolism[MESH]|Aldehyde Dehydrogenase/genetics/*metabolism[MESH]|Aldehyde Reductase/metabolism[MESH]|Aldehydes/*metabolism[MESH]|Animals[MESH]|Apoptosis[MESH]|Arylsulfotransferase/metabolism[MESH]|Biological Transport[MESH]|Brain/metabolism/pathology[MESH]|Catechol O-Methyltransferase/metabolism[MESH]|Catechols[MESH]|Free Radicals/metabolism[MESH]|Glucuronosyltransferase/metabolism[MESH]|Humans[MESH]|Neurons/metabolism[MESH] |