Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
Warning: file_get_contents(http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=17021367&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 445
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Fatty acid metabolism, the central nervous system, and feeding Ronnett GV; Kleman AM; Kim EK; Landree LE; Tu YObesity (Silver Spring) 2006[Aug]; 14 Suppl 5 (ä): 201S-207SA potential role for fatty acid metabolism in the regulation of energy balance in the brain or in the periphery has been considered only recently. Fatty acid synthase (FAS) catalyzes the synthesis of long-chain fatty acids, whereas the breakdown of fatty acids by beta-oxidation is regulated by carnitine palmitoyltransferase-1, the rate-limiting enzyme for the entry of fatty acids into the mitochondria for oxidation. While the question of the physiological role of fatty acid metabolism remains to be resolved, studies indicate that inhibition of FAS or stimulation of carnitine palmitoyltransferase-1 using cerulenin or synthetic FAS inhibitors reduces food intake and incurs profound and reversible weight loss. Several hypotheses regarding the mechanisms by which these small molecules mediate their effects have been entertained. Centrally, these compounds alter the expression of hypothalamic neuropeptides, generally reducing the expression of orexigenic peptides. Whether through central, peripheral, or combined central and peripheral mechanisms, these compounds also increase energy consumption to augment weight loss. In vitro and in vivo studies indicate that at least part of C75's effects is mediated by modulation of adenosine monophosphate-activated protein kinase, a member of an energy-sensing kinase family. These compounds, with chronic treatment, also alter gene expression peripherally to favor a state of enhanced energy consumption. Together, these effects raise the possibility that pharmacological alterations in fatty acid synthesis/degradation may serve as a target for obesity therapeutics.|*Eating/drug effects/physiology[MESH]|4-Butyrolactone/*analogs & derivatives/therapeutic use[MESH]|Central Nervous System/physiology[MESH]|Energy Intake/drug effects/physiology[MESH]|Energy Metabolism/drug effects/physiology[MESH]|Fatty Acid Synthases/*antagonists & inhibitors/metabolism[MESH]|Fatty Acids/*metabolism[MESH]|Gene Expression/*drug effects/physiology[MESH]|Humans[MESH]|Obesity/*drug therapy/enzymology/metabolism[MESH]|Oxidation-Reduction[MESH]|Weight Loss[MESH] |