Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Topics on the Na+/Ca2+ exchanger: role of vascular NCX1 in salt-dependent hypertension Iwamoto T; Kita SJ Pharmacol Sci 2006[Sep]; 102 (1): 32-6Excess salt intake is a major risk factor for hypertension. However, the molecular mechanisms underlying salt-dependent hypertension remain obscure. Our recent studies using selective Na(+)/Ca(2+) exchange inhibitors and genetically engineered mice provide compelling evidence that salt-dependent hypertension is triggered by Ca(2+) entry through Na(+)/Ca(2+) exchanger type 1 (NCX1) in arterial smooth muscle. Endogenous cardiac glycosides, which may contribute to salt-dependent hypertension, seem to be necessary for NCX1-mediated hypertension. Intriguingly, recent studies by Dostanic-Larson et al. using knock-in mice with modified cardiac glycoside binding affinity of Na(+),K(+)-ATPases demonstrate that this binding site plays an important physiological role in blood pressure control. Thus, when cardiac glycosides inhibit Na(+),K(+)-ATPase in arterial smooth muscle cells, the elevation of local Na(+) on the submembrane area is believed to facilitate Ca(2+) entry through NCX1, resulting in vasoconstriction. This proposed pathway may have enabled us to explain how to link dietary salt to hypertension.|*Sodium Chloride[MESH]|Animals[MESH]|Antihypertensive Agents/pharmacology[MESH]|Calcium/metabolism[MESH]|Cardiac Glycosides/pharmacology[MESH]|Humans[MESH]|Hypertension/*chemically induced/*physiopathology[MESH]|Sodium Chloride, Dietary/pharmacology[MESH]|Sodium-Calcium Exchanger/*antagonists & inhibitors/*physiology[MESH]|Vasoconstriction/drug effects[MESH] |