Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Recent advances in renal tubular calcium reabsorption Mensenkamp AR; Hoenderop JG; Bindels RJCurr Opin Nephrol Hypertens 2006[Sep]; 15 (5): 524-9PURPOSE OF REVIEW: Knowledge of renal Ca2+ reabsorption has evolved greatly in recent years. This review focuses on two recent discoveries concerning passive and active Ca2+ reabsorption. RECENT FINDINGS: The thiazide diuretics are known for their hypocalciuric effect. Recently, it has been demonstrated that TRPV5-knockout mice, in which active Ca2+ reabsorption in the distal convoluted tubule is completely abolished, show the same sensitivity towards thiazides as wild-type mice. This indicates that thiazide affects Ca2+ reabsorption indirectly via contraction of the extracellular volume, independent of active Ca2+ reabsorption in the distal convoluted tubule, thereby increasing passive paracellular Ca2+ transport in the proximal tubule. Moreover, the antiaging hormone Klotho regulates Ca2+ reabsorption in the distal convoluted tubule via a novel molecular mechanism. Klotho stabilizes the TRPV5 Ca2+ channel in the plasma membrane by deglycosylation of the protein. SUMMARY: By showing that thiazide-induced hypercalciuria is due to increased passive Ca2+ reabsorption in the proximal tubule, a long-standing issue has been solved, underlining the importance of proximal paracellular Ca2+ reabsorption. Moreover, the molecular mechanism by which the antiaging hormone Klotho regulates TRPV5 activity may prove to be generally applicable in Klotho-mediated prevention of aging.|Absorption[MESH]|Animals[MESH]|Calcium Metabolism Disorders/chemically induced/metabolism[MESH]|Calcium/*metabolism[MESH]|Glucuronidase/metabolism[MESH]|Humans[MESH]|Kidney Tubules/*metabolism[MESH]|Klotho Proteins[MESH]|Sodium Chloride Symporter Inhibitors[MESH]|TRPV Cation Channels/metabolism[MESH] |