Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
Warning: file_get_contents(http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16233230&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 445
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Novel energy metabolism in anaerobic hyperthermophilic archaea: a modified Embden-Meyerhof pathway Sakuraba H; Ohshima TJ Biosci Bioeng 2002[]; 93 (5): 441-8Hyperthermophiles, a group of microorganisms whose optimum growth temperatures are above 80 degrees C, have been isolated mainly from marine and continental volcanic environments. They are viewed as potential sources of extraordinarily stable biomolecules with applications in novel industrial processes. Most hyperthermophiles belong to the domain Archaea, the third domain of life, and are considered to be the most ancient of all extant life forms. Recent studies have revealed unusual energy metabolic processes in hyperthermophilic archaea, e.g. a modified Embden-Meyerhof pathway, that have not been observed so far in organisms belonging to the Bacteria and Eucarya domains. Several novel enzymes--ADP-dependent glucokinase, ADP-dependent phosphofruktokinase, glyceraldehyde-3-phosphate ferredoxin oxidoreductase, phosphoenolpyruvate synthase, pyruvate: ferredoxin oxidoreductase, and ADP-forming acetyl-CoA synthetase--have been found to be involved in the modified Embden-Meyerhof pathway of the hyperthermophilic archaeon Pyrococcus furiosus. In addition, a novel regulation site for energy metabolism and a unique mode of ATP regeneration have been postulated to exist in the pathway of P. furiosus. The metabolic design observed in this microorganism might reflect the situation at an early stage of evolution. This review focuses mainly on the unique energy metabolism and related enzymes of P. furiosus that have recently been described.ä |