Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Possible involvement of singlet oxygen species as multiple oxidants in p450 catalytic reactions Yasui H; Hayashi S; Sakurai HDrug Metab Pharmacokinet 2005[Feb]; 20 (1): 1-13Cytochrome P450 (P450) constitutes a superfamily of enzymes which activate dioxygen and carry out monooxygenation reactions of large numbers of endogenous and xenobiotic compounds. Drug metabolism is a particularly important P450 function, and, therefore, elucidating the metabolic products and pathways of drugs is essential for drug development. To explain the substrate selectivity of P450 reactions, it is necessary to understand the formation of multiple activated oxygen species to determine the type of catalyzed reactions, in addition to conducting structure analyses of P450s. Although an oxo-Fe(IV)-porphyrin-pi-cation radical is regarded as an activated oxygen species in P450 reactions, a nucleophilic Fe(III)-peroxo species has also been proposed as another oxidant. In the past decade, various studies indicated that P450-catalyzed oxygenations are complex, and that a single reaction pathway cannot explain all of the experimental results. In addition, the microsomal P450 system is known to generate reactive oxygen species (ROS). However, the contribution of ROS to P450 reactions remains unclear. We recently found that singlet oxygen (1O2) was involved in both several rat liver microsomal P450 reactions and four human CYP subfamily activities, as confirmed by the ESR spin-trapping method. In this review, we describe the studies that have been conducted on the detection and characterization of ROS in P450 reactions related to drug metabolism that involve the possibility of 1O2 in the P450 catalytic cycle. Gaining an understanding of the activated oxygen species that determine the type of drug metabolism will help us to predict the important metabolites formed.|*Oxidants[MESH]|*Singlet Oxygen[MESH]|Catalysis[MESH]|Cytochrome P-450 Enzyme System/*metabolism[MESH]|Electron Spin Resonance Spectroscopy[MESH]|Oxidation-Reduction[MESH]|Substrate Specificity[MESH] |