Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
Warning: file_get_contents(http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=12594931&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 445
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Type I photosynthetic reaction centres: structure and function Heathcote P; Jones MR; Fyfe PKPhilos Trans R Soc Lond B Biol Sci 2003[Jan]; 358 (1429): 231-43We review recent advances in the study of the photosystem I reaction centre, following the determination of a spectacular 2.5 A resolution crystal structure for this complex of Synechococcus elongatus. Photosystem I is proving different to type II reaction centres in structure and organization, and the mechanism of transmembrane electron transfer, and is providing insights into the control of function in reaction centres that operate at very low redox potentials. The photosystem I complex of oxygenic organisms has a counterpart in non-oxygenic bacteria, the strictly anaerobic phototrophic green sulphur bacteria and heliobacteria. The most distinctive feature of these type I reaction centres is that they contain two copies of a large core polypeptide (i.e. a homodimer), rather than a heterodimeric arrangement of two related, but different, polypeptides as in the photosystem I complex. To compare the structural organization of the two forms of type I reaction centre, we have modelled the structure of the central region of the reaction centre from green sulphur bacteria, using sequence alignments and the structural coordinates of the S. elongatus Photosystem I complex. The outcome of these modelling studies is described, concentrating on regions of the type I reaction centre where important structure-function relationships have been demonstrated or inferred.|Amino Acid Sequence[MESH]|Chlorobi/chemistry/metabolism[MESH]|Cyanobacteria/*chemistry[MESH]|Electron Transport[MESH]|Kinetics[MESH]|Models, Molecular[MESH]|Molecular Sequence Data[MESH]|Photosynthesis[MESH]|Photosynthetic Reaction Center Complex Proteins/*chemistry/*metabolism[MESH]|Protein Conformation[MESH]|Sequence Alignment[MESH]|Structure-Activity Relationship[MESH] |