Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Vitamin D analogues for secondary hyperparathyroidism Brown AJ; Dusso AS; Slatopolsky ENephrol Dial Transplant 2002[]; 17 Suppl 10 (ä): 10-9Secondary hyperparathyroidism (2HPT), a common disorder in patients with chronic renal failure, develops in response to phosphate retention and low serum 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3), calcitriol). Replacement therapy with calcitriol or its precursor 1alpha-hydroxyvitamin D(3) (1alphaOHD(3), alfacalcidol) often produces hypercalcaemia, especially when combined with calcium-based phosphate binders. In addition, these vitamin D compounds can aggravate the hyperphosphataemia in these patients. Several vitamin D analogues have been developed that retain the direct suppressive action of 1,25(OH)(2)D(3) on the parathyroid glands but have less calcaemic activity, thereby offering a safer and more effective means of controlling 2HPT. 1,25-Dihydroxy-19-norvitamin D(2) (19-norD(2)) and 1alpha-hydroxyvitamin D(2) (1alphaOHD(2)) are available in the US and 1,25-dihydroxy-22-oxavitamin D(3) (22-oxacalcitriol, OCT) and 1,25-dihydroxy-26,26,26,27,27,27-hexafluorovitamin D(3) (1,25(OH)(2)26,27F6 D(3), falecalcitriol) have been approved for use in Japan. Animal studies have demonstrated that OCT and 19-norD(2) have a wider therapeutic window for suppression of parathyroid hormone (PTH) because of their lower calcaemic and phosphataemic activities. The low calcaemic activity of OCT has been attributed to its rapid clearance, which prevents sustained effects on intestinal calcium absorption and bone resorption, but still allows a prolonged suppression of PTH gene expression and parathyroid cell growth. The calcaemic activity of 19-norD(2) diminishes with the duration of treatment by as yet unknown mechanisms. The lower toxicity of 1alphaOHD(2), compared with 1alphaOHD(3), has also been noted with chronic, but not acute administration, perhaps due to differential metabolism. The unique actions of falecalcitriol may also result from an altered metabolism. A clear understanding of the molecular basis for the selectivity of vitamin D analogues on parathyroid function may allow the design of even more effective analogues.|Calcitriol/analogs & derivatives/*therapeutic use[MESH]|Calcium/physiology[MESH]|Chronic Kidney Disease-Mineral and Bone Disorder/drug therapy[MESH]|Ergocalciferols/therapeutic use[MESH]|Humans[MESH]|Hyperparathyroidism, Secondary/*drug therapy[MESH]|Kidney Failure, Chronic/*drug therapy[MESH]|Parathyroid Hormone/antagonists & inhibitors[MESH]|Vitamin D/*analogs & derivatives/*therapeutic use[MESH] |