Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
Warning: file_get_contents(http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=12120892&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 445
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing Chai J; Tarnawski ASJ Physiol Pharmacol 2002[Jun]; 53 (2): 147-57Serum response factor (SRF) is a transcription factor, which binds to a serum response element (SRE) associated with a variety of genes including immediate early genes such as c-fos, fosB, junB, egr-1 and -2, neuronal genes such as nurr1 and nur77 and muscle genes such as actins and myosins. By regulating expression of these genes, SRF controls cell growth and differentiation, neuronal transmission as well as muscle development and function. SRF can be activated by a variety of agents, including serum, lysophosphatidic acid (LPA), lipopolysaccharide (LPS), 12-O-tetradecanoylphorbol-13-acetate (TPA), cytokines, tumor necrosis factor-alpha (TNFalpha), agents that increase intracellular Ca2+, T-cell virus1 activator protein, hepatitis B virus activator proteins pX, activated oncogenes and protooncogenes as well as extracellular stimuli such as antioxidant and UV light. SRF itself is regulated by both cellular signal transduction pathways and interaction with other transcription factors e.g. Sp1, ATF6 and myogenic regulatory factors. Its biological function is best elucidated for myocardium. Specific cardiac SRF transgenesis demonstrated that overexpression of SRF caused hypertrophic cardiomyopathy in mouse and the mouse died of heart failure within 6 months after birth. Other transgenic data suggested that sufficient SRF was needed for embryogenesis and early development. Since SRF is important regulator of numerous genes involved in cell growth and differentiation, including muscle and neural components, SRF may also play a crucial role in tissue injury and ulcer healing, e.g. healing of gastrointestinal ulcers.|Animals[MESH]|Humans[MESH]|Serum Response Element/physiology[MESH]|Serum Response Factor/*chemistry/*physiology[MESH]|Wound Healing/*physiology[MESH] |