Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
l�ll Differential effects of 19-nor-1,25-dihydroxyvitamin D(2) and 1,25-dihydroxyvitamin D(3) on intestinal calcium and phosphate transport Brown AJ; Finch J; Slatopolsky EJ Lab Clin Med 2002[May]; 139 (5): 279-8419-Nor-1,25-dihydroxyvitamin D(2) (19-norD(2)) a less calcemic and phosphatemic analog of 1,25-dihydroxyvitamin D (1,25[OH](2)D(3)), is approved for the treatment of secondary hyperparathyroidism in patients with kidney failure. We have previously demonstrated that 19-norD(2) is less active than 1,25(OH)(2)D(3) in stimulating bone resorption. In this study, we compared the potencies of 19-norD(2) and 1,25(OH)(2)D(3) in stimulating net calcium and phosphate absorption in the intestine. Mineral balance was assessed in normal rats during the last 4 days of a 14-day treatment with various daily doses of 19-norD(2) or 1,25(OH)(2)D(3). Calcium absorption increased from 16.5% +/- 7.8% in vehicle-treated rats to 27.5% +/- 7.2% in rats given 10 ng/day 1,25(OH)(2)D(3) and to 21.6% +/- 3.9%, 26.2% +/- 5.5%, and 27.4% +/- 5.1% in rats treated with 10, 50, and 100 ng/day 19-norD(2), respectively. Thus comparable stimulation of calcium transport was attained with 10 ng 1,25(OH)(2)D(3) and 100 ng 19-norD(2). Similar results were obtained for phosphate absorption, with an increase from 28.2% +/- 5.5% in vehicle-treated rats to 40.2% +/- 4.7% in rats given 10 ng/day 1,25(OH)(2)D(3) and to 32.9% +/- 2.2%, 36.2% +/- 4.5%, and 36.8% +/- 3.8% in rats given 10, 50, and 100 ng/day 19-norD(2), respectively. Vitamin D compounds are believed to increase calcium absorption by inducing a calcium channel (epithelial calcium transporter or calcium transporter-1 [CaT1]) on the luminal membrane, a calcium-binding protein (Calbindin D9k) in the cytosol, and a calcium pump (plasma membrane calcium adenosine triphosphatase-1 [PMCA1]) on the basolateral membrane. Northern-blot analysis of intestinal ribonucleic acid of vitamin D-deficient rats given seven daily injections of vehicle or 100 ng 1,25(OH)(2)D(3) or 19-norD(2) revealed that 19-norD(2) was less potent than 1,25(OH)(2)D(3) in stimulating expression of CaT1, Calbindin D9k and PMCA1. In summary, the reduced calcemic and phosphatemic activities of 19-norD(2) can be attributed to lower potency in stimulating intestinal calcium and phosphate absorption.|Animals[MESH]|Blotting, Northern[MESH]|Calbindins[MESH]|Calcitriol/administration & dosage/*pharmacology[MESH]|Calcium Channels, T-Type/genetics[MESH]|Calcium Channels/genetics[MESH]|Calcium, Dietary/*pharmacokinetics[MESH]|Calcium-Transporting ATPases/genetics[MESH]|Calcium/blood/*pharmacokinetics[MESH]|Cation Transport Proteins[MESH]|Ergocalciferols/administration & dosage/*pharmacology[MESH]|Female[MESH]|Gene Expression Regulation/drug effects[MESH]|Intestinal Absorption/*drug effects/genetics[MESH]|Phosphates/*pharmacokinetics[MESH]|Phosphorus, Dietary/pharmacokinetics[MESH]|Plasma Membrane Calcium-Transporting ATPases[MESH]|RNA, Messenger/analysis[MESH]|Rats[MESH]|Rats, Sprague-Dawley[MESH]|S100 Calcium Binding Protein G/genetics[MESH]|TRPV Cation Channels[MESH] |