Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll From O2 to H2S: a landscape view of gas biology Kashiba M; Kajimura M; Goda N; Suematsu MKeio J Med 2002[Mar]; 51 (1): 1-10The majority of molecular oxygen (O2) consumed in the body is used as a substrate of cytochrome c oxidase to maintain oxidative phosphorylation for ATP synthesis. Rest of the O2 is used for oxidative biosynthesis including synthesis of vasoactive substances such as prostaglandins and secondary gaseous mediators such as nitric oxide (NO) and carbon monoxide (CO). Thus, O2 is not only used for maintenance of energy supply but also for regulating blood supply into tissues. Nitrous oxide (N2O), laughing gas for anesthesia, is generated endogenously through NO reductase in bacteria and fungi, and has recently been shown to modulate N-methyl-D-aspartic acid (NMDA) receptor function. A number of other biologically active gases could participate in regulation of cell and tissue functions. Carbon dioxide (CO2) is generated mainly through the Krebs cycle as a result of glucose oxidation and serves as a potent vasodilator, and hydrogen sulfide (H2S) synthesized through degradation of cysteine has recently been postulated to be a neuromodulator, although their receptor proteins for signaling have not been verified as a discernible molecular entity. Easy penetration allow these gases to access the inner space of receptor proteins and to execute their biological actions. These gases are generated and consumed in anaerobic bacteria through varied reactions distinct from those in mammals. This review summarizes recent information on mechanisms for gas generation and reception in biological systems.|*Gases[MESH]|*Hydrogen Sulfide[MESH]|*Oxygen[MESH]|Adenosine Triphosphate/metabolism[MESH]|Animals[MESH]|Electron Transport Complex IV/metabolism[MESH]|Humans[MESH]|Nitric Oxide[MESH]|Nitrous Oxide[MESH]|Oxidative Phosphorylation[MESH]|Oxygen Consumption[MESH] |