Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
Warning: file_get_contents(http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11356983&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 445
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Hepatic and renal toxicities associated with perchloroethylene Lash LH; Parker JCPharmacol Rev 2001[Jun]; 53 (2): 177-208Metabolism of perchloroethylene (Perc) occurs by cytochrome P450-dependent oxidation and glutathione (GSH) conjugation. The cytochrome P450 pathway generates tri- and dichloroacetate as metabolites of Perc, and these are associated with hepatic toxicity and carcinogenicity. The GSH conjugation pathway is associated with generation of reactive metabolites selectively in the kidneys and with Perc-induced renal toxicity and carcinogenicity. Physiologically based pharmacokinetic models have been developed for Perc in rodents and in humans. We propose the addition of a submodel that incorporates the GSH conjugation pathway and the kidneys as a target organ. Long-term bioassays of Perc exposure in laboratory animals have identified liver tumors in male and female mice, kidney tumors in male rats, and mononuclear cell leukemia in male and female rats. Increases in incidence of non-Hodgkin's lymphoma and of cervical, esophageal, and urinary bladder cancer have been observed for workers exposed to Perc. Limited, and not always consistent, evidence is available concerning the kidneys as a target organ for Perc in humans. Three potential modes of action for Perc-induced liver tumorigenesis are: 1) modification of signaling pathways; 2) cytotoxicity, cell death, and reparative hyperplasia; and 3) direct DNA damage. Four potential modes of action for Perc-induced renal tumorigenesis are: 1) peroxisome proliferation, 2) alpha-2u-globulin nephropathy, 3) genotoxicity leading to somatic mutation, and 4) acute cytotoxicity and necrosis leading to cell proliferation. Finally, the epidemiological and experimental data are assessed and use of toxicity information in the development of a reference dose and a reference concentration for human Perc exposure are presented.|*Solvents/metabolism/pharmacokinetics/toxicity[MESH]|*Tetrachloroethylene/metabolism/pharmacokinetics/toxicity[MESH]|Animals[MESH]|Cytochrome P-450 Enzyme System/metabolism[MESH]|Female[MESH]|Humans[MESH]|Kidney/*drug effects[MESH]|Liver/*drug effects[MESH]|Male[MESH]|Occupational Exposure[MESH] |