Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Functions of WW domains in the nucleus Sudol M; Sliwa K; Russo TFEBS Lett 2001[Feb]; 490 (3): 190-5The WW domain is a protein module found in a wide range of signaling proteins. It is one of the smallest protein modules that folds as a monomer without disulfide bridges or cofactors. WW domains bind proteins containing short linear peptide motifs that are proline-rich or contain at least one proline. Although the WW domain was initially considered a 'cytoplasmic module', the proteins containing WW domains have also been localized in the cell nucleus. Moreover, these proteins have been documented to participate in co-activation of transcription and modulation of RNA polymerase II activity. The carboxy-terminal domain (CTD) of RNA polymerase II acts as an assembly platform for distinct WW domain-containing proteins that affect the function of the RNA polymerase II. The formation of complexes between CTD and WW domain-containing proteins is regulated by phosphorylation of the CTD. Since the CTD sequence is highly repetitive and a target of several post-translational modifications and conformational changes, it presents a unique structure capable of enormous molecular diversity. The WW domain has been implicated in several human diseases including Alzheimer's disease. The WW domain-containing iso-prolyl isomerase named Pin1, a protein known to be essential for cell cycle progression, was shown to be active in restoration of the microtubule-binding activity of Tau, a protein of neurofibrillar tangles found in the brains of Alzheimer's patients. It is the WW domain of Pin1 that interacts directly with Tau protein. In addition, the WW domain-containing adapter protein FE65 was shown to regulate processing of Alzheimer's amyloid precursor protein. It is expected that by understanding the details of the WW domain-mediated protein-protein interactions, we will be able to illuminate numerous signaling pathways which control certain aspects of transcription and cell cycle.|*Protein Structure, Tertiary[MESH]|*Signal Transduction[MESH]|Alzheimer Disease/drug therapy/metabolism[MESH]|Cell Cycle[MESH]|Humans[MESH]|NIMA-Interacting Peptidylprolyl Isomerase[MESH]|Nerve Tissue Proteins/chemistry/metabolism[MESH]|Nuclear Proteins/*chemistry/*metabolism[MESH]|Peptidylprolyl Isomerase/chemistry/metabolism[MESH]|Phosphorylation[MESH]|Protein Binding[MESH]|RNA Polymerase II/chemistry/metabolism[MESH]|Transcription, Genetic[MESH]|Yeasts/enzymology/metabolism[MESH] |