Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Thermodynamic and kinetic analyses for understanding sequence-specific DNA recognition Oda M; Nakamura HGenes Cells 2000[May]; 5 (5): 319-26Thermodynamic and kinetic analyses of biomolecular interactions reveal details of the energetic and dynamic features of molecular recognition processes, and complement structural analyses of the free and complexed conformations. The recent improvements in both isothermal titration calorimetry and surface plasmon resonance sensoring provide powerful tools for analysing biomolecular interactions in thermodynamic and kinetic approaches. The thermodynamic and kinetic parameters obtained for binding between protein and DNA indicate the mechanism of specific DNA recognition, in the high-resolution structures of the protein-DNA complexes. The effects of temperature and ionic strength reflect the conformational changes of the protein and DNA molecules upon complex formation, including important contributions of water and solutes. When combined with mutational studies, the interactions can be reduced to several energetic contributions from individual contacts. These studies should be useful to determine general features of protein functions in genetic regulation.|Animals[MESH]|Binding Sites/genetics[MESH]|DNA Mutational Analysis[MESH]|DNA-Binding Proteins/*chemistry/genetics[MESH]|DNA/*chemistry/genetics[MESH]|Humans[MESH]|Kinetics[MESH]|Nucleic Acid Conformation[MESH]|Protein Binding[MESH]|Protein Conformation[MESH]|Sequence Analysis, DNA[MESH]|Thermodynamics[MESH] |